![]() Sea Life
UV radiation has also been found to cause damage to the early developmental stages of fish, shrimp, crab, amphibians and other animals. The most severe effects are decreased reproductive capacity and impaired larval development. Even at current levels, UV radiation is a limiting factor, and small increases in UV exposure could result in a significant reduction in the size of the population of animals that eat these smaller creatures. Research indicates that many plankton species already seem to be at or near their maximum tolerance of UV radiation. Thus, even small increases in UV levels as a result of ozone depletion may have a dramatic impact on plankton life and on entire marine ecosystems. If ozone layer depletion reached 15% over temperate waters in the mid-latitudes, it would take fewer than five days in summer for half the zooplankton in the top metre of these waters to die from the increased radiation. Additionally, large amounts of young fish, shrimp and crabs would die before reaching their reproductive age. Less food would be available for adult fish and other higher forms of marine life, and therefore for human consumption. This is of particular relevance, as more than 30% of the world's animal protein for human consumption comes from the sea. Effects of the ozone hole in Antarctica have already been seen in some of the organisms. Most of the Antarctic organisms have a low tolerance for UV radiation since for much of the year, hardly any direct sunlight reaches the continent. With the reduced ozone in springtime, UV radiation has been able to penetrate the atmosphere with a higher intensity. Already at the base of the Antarctica food chain an impact has been felt. Increased UV radiation has already reduced the plankton populations by between 6% and 12%. Consequently, species higher up have felt the impact. |
Websites
Other topics |